e LR a1
R *ﬁ_ﬁzr 1T

Functional Prcgrammlng

AL, 5K 1%
IERKF 1T R Fbx
2024F09~12H

| N

b}
-
)
O

< N

Jult18 . Functor. Monad

= Haskell 1R £ 4 B 424 /15 % [JiB536 (Category Theory, CT)
= fjan, Functor. Monadyjie iAok I T TERE IR IS

= RAERGE, CTHRARIRIMSEHR SR, MEREAS, @7 T EEARSERET

= AERRARIEIN R CPLRESUIRT . HRREMEULIE R FLAREVGIEHY, MBOZREFIIR (AR F) 7

= FAHIN: CTRAE AR ARRIRIEH]
= fER, FTRIBIARR : —SBCE AR LA RTIT AR B CT 1
= FARINE, FRATIARAEME IEIE R R B 17, Sl 2] it X Lo i Rt 47 25

| AT DR (B2, XIS (kKoL o1k B B Haskell.
W rEEUNfT
REBE. BTG,

SH N .
el —P 4
» JEREICRE—FOTH AR S, TR A R 404408 2 TR AR B dl 5 S gy

Category theory provides a cross-disciplinary language for mathematics designed to delineate general phenomena, which enables

the transfer of ideas from one area of study to another.

= JuWEERE PO T2 (analogy) HYELE.

» REEAR MG S RO S TR A AR TR RO Rk R —
(RN G i1 v N

Mathematics is the art of giving the same name to different things. Poetry is the art of giving different names to the same thing.
B SRR A R BRSNS S, R R R EARE TSR

SRNEL 7R W A T PN 5 VS VS RN 32 B el T 72 e 5 e UYL TN X E NS4 2917
B X LB A0 73U Jim 2 W%W%@ hA o

= JEBECRAMT BN LR e | AR TR, PREEE = SRR

23 512

N AR

LT B BN FEZORIE T T Ak

1. Saunders Mac Lane. Categories for the Working Mathematician (Second Edition). Springer, 1998.
2. Steve Awodey. Category Theory (Second Edition). Oxford University Press, 2010.

3. Emily Riehl. Category Theory in Context. Dover Publications, 2016.

4. Bartosz Milewski. Category Theory for Programmers (Version v1.3.0-0-g6bb0bc0). August 12, 2019.

Ca
tegory /

.

\‘
O
it

il

Definition: Category / jul}
A category C consists of the following data :

1. A class of objects / ¥f%:: a, b, c, ..., denoted by C
2. A class of morphisms / Z5¢: f, g, h, ..., denoted by C;
3. Two operations on morphisms: domain and codomain.
= The former assigns to each morphism f in C; an object in Cy, denoted by dom f.
= The latter assigns to each morphism f in C; an object in Cy, denoted by cod f.
We use notation f : @ — bor f, to indicate a morphism f in C; withdomf = aandcodf = b
4. An identity operation that assigns to each object a in Cy a morphism f, ., in C1, denoted by1,

5. A composition operation that assigns to each pair (gb_m, fa_>b) of morphisms in C; a morphism h,_.. in
C;,denoted by g o f.

These data are subject to the following two axioms:

1.Unit: fol, = f =10 f, forany f, . in C;.
2. Associativity: ho (go f) = (hog) o f, forany f, b, gbe, heqin C.

Definition: Category/jul§ ---------- (S RAR)

—A Vs C pin R A

1. —&%%:a,b,c,..., itk Coy
2. —R&H: 1,90, ..., 88 G
3. 597 ERP N 4E : domain il codomain.

» grgh Co i E—A a4t f Ry Co Fi—x%, idkh domf.

» EEh Co i g—A st f e Co hi—Ax%, idh codf.

BAVERFFS f:a — b fasp Fom CL F—AE4 f, HiE domf =a Hcodf =b

4. —/~ identity 45 Hh Co PG —NHER a BT CL F—ADEH fose, EH],
5. —4~ composition #{F: Kb Cy HHATA— A5 (bsc, fasp) BT Co PII—AEH hase, i8R go f.

X BB T B AR AN T A B

1.Unit: fol, = f =10 f, %+ Ci PHUEM—AESE faob
2. Associativity: ho (go f) = (hog) o f, % Ci HHUEMEAZS fasty Gboes Peod

AT —AN0 2 _Eid e U S
ah e — e Bk

FRILZAb, Tod X yumg e A A AR AT £)48

T, FATHEEE XA E /BER . B LA 2 T W) s |

Jubs)z : Lero

XA —AuE, RE I T

PR FE B S A, RGBT, ALBLLE L, TR

FELUREMER T BRI |

Zero: — AL EAEATR GRIZSIH I TEWE

= BARSE T R—ANES, WA, G Lero A MR —ATERE

sz : One. Two. Thr
= jupk One:
. Oney={*}, One ={1,}
= JilE Two
- Twoo = {% x}, Twor={L, 1,, fo..}
= Y% Thr

" ThrO = { *y K, @ }7 Thrl - { 1*7 1*7 107 f*—)*a Gx—e5 h*—)o }7 h = go f
O Finite Category / A IRIEW;: FRitis C — RGNS, 24 HACY C 2— M HIREA.

O W PE— BRI C, Co —Er—MHRES.

iR — NG, WA S NA S e i o — A T 2

= EHEA A, e —ANmE A
= Ag={alacA}=A
» A;={1l,|acAp}
 ESMUSHMAE, TR T a € A, 1a01, =1,

@ OB O @ @ @

—

TREFEH AN GULNAEBA s, BATREAEFRIR T !
RN, AU | TR, SRR aTEAER, T0 BB SR

” & Rk s R BB RS . A 2 Ak B RO
BHTM g, thE emo 7T ...

JubE .z : Fn

The category Fn consists of the following data :

1. Fng = {a | aisaset}
2. Fny = {f | f is a function between two sets in Fng}
3. Two operations on functions: domain and codomain
= For each function f in Fny,domf = f’s domain set, and cod f = f’s codomain set.
4. The identity operation
» ForeachsetainFng,1, ={z+— z |z € a}.

5. The composition operation

= For each pair (gp—c, fap) of functions in Fny, (g o f)ase = {z — g(f(2)) | = € a}.

These data are subject to the following two axioms:

1. Unit: fol, = f = 1,0 f, forany f, . in Fn;.
2. Associativity: ho (go f) = (hog) o f, forany fo b, gb—e, Pesqin Fny.

sz : Fn // Concise Version
— P RFEEAS (asobjects) EHpi%y (as morphisms) [HyEBE

The category Fn is defined by:

1. Fng = {a | aisaset}

2. Fny = {f | f is a function between two sets in Fng}

3. domf = f’s domain set, and codf = f’s codomain set.
4.1, ={z— x|z €a}.

5. (g5c © fasb)ane = {z = g(f(2)) | = € a}.

These data are subject to the following two axioms:

1.Unit: fol=f=10f

Proof: (fauss 0 La) & = famrs (Lo @) = facs @ = Ly (famrp @) = (15 0 facsp) @

2. Associativity: ho (9o f) = (hog)o f

Proof: (ho (go f))z=h((gof)z) =h(g(f=z)) =(hog) (fz)=((hog)of)=

Fn XAk, A4 7 AEe?

R4 Haskell 28H0 0 PMEZS, B4, Fn KM WORBEROFE T .

Wr AR LF FRL IR T ...

Haskell BB 4715, KM HUETE Fn XA FENFERE

KT TubeE X — N EHEHT

[= YERTETEEENE X P, 19 —/-7EBE P 1ELE a class of objects fil a class of morphisms,

{ = BET X FhBR IR B A a set of objects B a set of morphisms 14? // Set %o i it v S A

» B EFEEE - Fng = {a | aisaset} XANAKRIGREANESG?
= PRSI EN REUE : FE DE AT AR RS
= XFRAEE, HENERL: A
= Eh: T EESESGe, BATHAT LG EH - EAD, WREDE a

Proposition: X TE-E#EG a IEESb={z €a|x ¢ x}, T4HI: b ¢ a.

» Proof: i
(b € a) (beb)Vvbegb)
(beED)ANDED) V (bED)A(DED))
false v false

false

O R

Shmds —

iR : Rel

— KT HA (asobjects) SEAZAM_IEXKFR (as morphisms) [H7El%
The category Rel is defined by:

1. Relp = {a | ais a set}

2. Rel; = {r | r is a binary relation between two sets in Relj}

3. dom r = r’s left set, and cod » = r’s right set.

4.1, ={(z,x) | x € a}.

5. (Sb—¢c © Tassb)ase = {(x,2) | Ty € b: (z,y) € r A (y,2) € s}.

These data are subject to the following two axioms:

l.Unit:rol=r=1or
2. Associativity:to (sor) = (tos)or

See next two slides for the two axioms’ proof.

Jul% 2 : Rel

1. Unit:rol=r=1o0r

Proof:

(LE, Z) € Tgsp O 1a

Jy€a:(z,y) €L, (y,2) €T

Jyca:z€a,x=y,(y,2) €T

Jyca:zca,z=y,(z,2)€r

(z,2) erN(Jy€a:z€a,z=1y)

(z,2) € r Atrue

(z,2) €T

According to the axiom of extensionality of the ZFC set theory, we have r,_,; o 1, = 7.

(ac,z) =]-bo'ra—>b

Jyeb: (z,y) er,(y,2) € 1p
Jyeb: (z,y) €Er,zeby=2
Jyeb:(z,2)er,zeby=z2
(z,2) erN(Jyeb:zeby=2)
(z,2) € r Atrue

(z,2) er

According to the axiom of extensionality of the ZFC set theory, we have 7 = 13 0 74 .

Jul% 2 : Rel

2. Associativity:to (sor) = (tos)or

Proof:

(113, ’UJ) € leyd © (sb%c © ra—>b)
dz€c:(x,2) € (SpeOTap), (z,w) €T
dze€c:(Fyeb: (z,y) €, (y,2) € 3),(2,w
dzec:yeb: (z,y) er,(y,2) €s,(2,w)
Jyeb:3z€c: (z,y) €, (y,2) € s, (2,w)

v

) €
€t
=

(JZ, w) S (tcad © Sb%c) OTa—b

Ely €b: (ZB, y) er, (ya ’LU) S (tc—>d © sb%c)
Jyeb:(z,y) er,(Fzcc:(y,2) €s,(z,w) €t)
Jyeb:3zec: (z,y) €r,(y,2) €s,(z,w) €L
(iL’, w) €leyd © (sb%c © Ta%b)

According to the axiom of extensionality of the ZFC set theory, we havet o (s o 1) = (t o s)

or.

TulE R Z: Pos

= Definition: A partially ordered set (poset) is a tuple (a, <,), where:

= @gisaset

s <, C a X aisabinary relation that satisfies the following three conditions:
1. Reflexivity: © <, x, forall z € a.
2. Transitivity: (z <, y) A (y <, 2) = (z <, 2), forallz,y,z € a.
3. Antisymmetry: (z <, y) A (y <, z) = (z = y), forallz,y € a.

» Definition: A monotone function between two posets (a, <,) and (b, <p) is a functionm : @ — b such
that the following condition hold:

r<,y = mx<ymy, forallz,yE€a.

Juk Rz : Pos
The category Pos is defined by:

1. Posy = {a | a is a poset}
2. Pos; = {m | m is a monotone function between posets in Posj}
3. dom m = m’s source poset, and cod m = m’s target poset
4.1, ={z— x|z €a}
[» Proof: identity is a monotone function.

5. (Npse © Map)ase = {x = n(m(x)) |z € ap}

[» Proof: the compostion of composable monotone functions is a monotone function.
These data are subjects to the following two axioms:

1.Unit:mol=m=1om

2. Associativity: 7o (nom) = (ron)om

Small Categories, Locally Small Categories

Definition : = A small category C has three functions:
A category C is small, iff C; is a set.

1
If C is a small category, then Cy must be a set. @ dom C1
= Foreach a € Cy, there is a distinct morphism 1, € C;. .
CO

' Definition : Given a category C, for any two objects a,b in Cy,

C(a,b) ={f € C; | domf = a, codf = b}

That is, C(a, b) is a class that consists of morphisms from a to b in C;.

Definition: A category C is locally small, iff for any two objects a, b in Cy, C(a, d) is a set.

Isomorphism / [&] #5551

Definition: A morphism fz_>y in a category is an isomorphism, iff :

There exists a morphism g,_,,, suchthat go f =1, and fog =1,.

= Here: g, denoted by f 1, is called the inverse isomorphism of f; and vise versa.

» Proof: Any isomorphism has only one inverse isomorphism.

Definition: Two objects &, ¢y in a category are isomorphic, denoted by x = v, iff:

There exists an isomorphism between x and y.

' An endomorphism / H [A 77 4t: A morphism f with dom f = codf.

O An automorphism / H R#Z5: A morphism that is both endomorphism and isomorphism.

Isomorphism / [&] #5551

Definition: A morphism fz_>y in a category is an isomorphism, iff :

There exists a morphism g,_,,, suchthat go f =1, and fog =1,.

. . . . = Given an isomorphism g
= Here: g, denoted by f_l, is called the inverse isomorphism of f; and vise versa. L Jooy

suppose its has two inverse isomorphisms gy, hy_m.

» Proof: Any isomorphism has only one inverse isomorphism. (gof)oh = go(foh)
& l,0h = gol,
& h = g

Definition: Two objects &, ¢y in a category are isomorphic, denoted by x = v, iff:

There exists an isomorphism between x and y.

' An endomorphism / H [A 77 4t: A morphism f with dom f = codf.

O An automorphism / H R#Z5: A morphism that is both endomorphism and isomorphism.

[somorphism / Gl #4235 : #b 78 B

Definition: A morphism fx_>y in a category is an isomorphism, iff :

There exists a morphism g,_,,, suchthat go f =1, and fog =1,.

1. [R5 S R H B
o AR, W RETEE——A f B R sS . ik f
2. RTPBIADXTGRIEE FA” BRI, 5B Ae g @ MEms T
o BEESREE IR, FELLMI R E S RIRIE R, AN
» BRE, TEMEH: a YuTRIERXTZ 2 (the class of objects) ; b. 24 5 0 R [A 5F
 FEILZ T, T EBRIANX PSR AW P A (Unit, Associativity)
3. XHEATERE C hIMEMA SR a, 1o R— A HFEMZSS: R, (T s M Ems R85 B &R
= JEp: 1,01, =1,H1,01,=1,
o R 1N =1,

Groupoid / J"&f, Group / &, Monoid / B 2L H7f

Definition: A category C is a groupoid, iff Vf € C; : f is an isomorphism.

Definition: A category C is a group, iff C is a groupoid with exactly one object in C.

TR A — PP E T3 — MR AR IVERG : 1 AEA XS 2. FrA S SHRR FF ST

Definition: A category C is a monoid, iff there exists exactly one object in Cy.

RS L R 1A 2 B2
e T IR E IR RS T A 2RI OB HH T 2
CW R B R KRR BRI S

VRBRAE VR il 7 =00 e RO 1o 2= 1 2

Monoid

Definition: A monoid is a triple (m, u, ®):

1. asetm,
2. a distinguished unit element u € m,

3. abinary operation ® : m X m — m
such that the following two conditions hold:

Lu®@Qr=z=xQu, Vr € m
2220 (Y®2)=(xQy)® 2z, Vx,y,z € m

Some examples of monoids:
= (N, 0, +), (Z, 0, +), (Q 0, +), (R, 0, +)

- (Na]-7 X)a (Z7 17 X)) (@7]-7 X)) (Ra 1a X)

Any monoid is a category

A monoid (m, u, ®) is a category M, where:

1.My={m}

2 My ={f|fem}=m

3.domf =m, andcodf = m

4. 1, = Um—m

5. (gm—>m O fm—>m)m—>m - (9® f)m—>m

These data are subject to the following two axioms:

1.Unit: fol=f=1o0of
2. Associativity: ho (go f) = (hog)o f

Group Any group is a category

Definition: A group is a triple (g, u, ®): A group (g, u, ®) is a category G, where:
1. asetg, 1. Go = {g}

2. an unit element u € g, 2.G={f|feglt=9g

3. a binary operation® : g X g — ¢, 3.domf =g, and codf = g

4. 15 = ugy
5. hgg0 fgug = (h® f)g—>g

such that the following four conditions hold:

. fu=f=u® f,Vfecg
2.(feh)®@k=f®(h®k),Vf,hkeg
3.Vfecg: A flecg: fRfl=Ff=f1Qf L.Unit: fol=Ff=10f

2. Associativity : ko (ho f) = (ko h) o f.

These data are subject to the following two axioms:

In addition, the following property holds:

= Every f € Gy is an isomorphism.

Functor / pfF

Functor / pRF

A functor F beteen two categories C, D, denoted by F' : C — D or F¢_,p, consists of the following data:

1. An object-mapping operation.
» [t maps each object ¢ in C to an object in Dy, denoted by F'c.
2. An morphism-mapping operation.

» It maps each morphism f. .~ in C; to a morphism gr. ,r in D1, denoted by F'f.

These data are required to satisfy the following two functoriality axioms:

1. F'1. = 1p., foreach object ¢ in Cy.
2. Fgo Ff = F (go f), foreach two morphisms f. ¢, g in Cy.

Endofunctor / H K

A functor Fc_,p that satisfies C = D is called an endofunctor.

TRl 1c

= e s C, T 1c: C— CEUMT:

= % Co PIEM—AXS e, lce=c
= X Cy PHER—AEH f I f =T

= WA 1o R HI AN A

1. 1¢ 1. = 13, foreach object cin Cy.
2. 1cgolc f=1c (go f), foreach two morphisms f, .., g/ in Cy.

PR~ PFn%Fn

The functor is defined by:

» Pa={z|zCa}.
» Pfogw={z—{fi|lica}|xzecPa}.

These data are required to satisfy the following two functoriality axioms:

1. P1, =1p,
Proof: P1, ={z—{l,i|i€a} |z € Pa}={z— x|z Pa}=1p,
2. PgoPf =P (gof)

Proof:

P (gb—>c © fa—>b)
P (gb%c o fa%b) z
(PgoPf)z

{z—{(gof)ilicz}|zecPa}

{(gof)ilica}
Pg((Pf)x)=Pg{filica}t={gjlje{filicatt={gjli=/rfiica}
{9(fi)lica}={(gof)ilicaz}="P(gpscofor)z

According to the axiom of extensionality of functions, we have Pgo Pf = P (g o f).

Haskell # 5%} Functor %€ X

= Functor XMHES R~ A—A type class

class Functor f where
fmap :: (a -=>b) ->f a ->fb

= H: ¥E Haskell 355 7, A LLEB—MYBA — 4 2RAI 25/ type constructor f 75 B A& — Functor,
HEARBEFR It — NS 1E 1 fmap K%L .
= “Haskell #1f#) Functor #f4&” #4 “CT #1f#] Functor #&” ; X —r{/REERINFING?
= f::Fng — Fny; X 7 Functor #1f] object-mapping
» fmap :: Fny — Fnq; € X 7 Functor #' /) morphism-mapping

» ffIfmap EHESHE K, X T —AFunctor F' : Fn — Fn
» EARWT4N: F J2—A4 Endofunctor (9 T

Kleisli Category and Monad

Model side effects / non-pure functions in CT

= An example: functions that log or trace their execution.
= The following gives such a function in C++ language.

string logger;

bool negate(bool b) {
logger += "Not so! ";
return !b;

3
= In modern programming, we try to stay away from global mutable state as much as possible. You would never
put code like this in a library.

= [t’s possible to make this function pure: you just have to pass the log explicitly, in and out.

pair<bool, string> negate(bool b, string logger) {
return make_pair(!b, logger + "Not so! ");

3
= [t’s also not a very good interface for a library function.
= The callers are free to ignore the string in the return type, so that’s not a huge burden;

= But they are forced to pass a string as input, which might be inconvenient.

Is there a way to do the same thing better?

= Idea 1: Seperate the aggregating-log-message concern from the function.

pair<bool, string> negate(bool b) {
return make_pair(!b, "Not so! ");

)
= Idea 2: Log-messages generated by functions are aggregated between function calls.
= To see how this can be done, let’s switch to a slightly more realistic example:
= A function from string to string that turns lower case characters to upper case.

string toUpper(string s) {
string result;

return result;

}
= A function that splits a string into a vector of strings, breaking it on whitespace boundaries

vector<string> toWords(string s) {
vector<string> result;

return result;

3

Then, we modify the two functions to embellish their regular return values with a log-message.

template<class A> using Writer = pair<A, string>;

Writer<string> toUpper(string s) { Writer<vector<string>> toWords(string s) {
string result; vector<string> result;
return make_pair(result, "toUpper "); return make_pair(result, "toWords ");

3 }

Then, we compose them into another embellished function that uppercases a string and splits it into words.

Writer<vector<string>> process(string s) {
auto pl = toUpper(s);
auto p2 = toWords(pl.first);
return make_pair(p2.first, pl.second + p2.second);

b

We have accomplished our goal:

= The aggregation of the log is no longer the concern of individual functions.

= Functions produce their own messages, which are then, externally, concatenated into a larger log.

A still existing drawback

= Now imagine a whole program written in this style.
= [t’s a nightmare of repetitive, error-prone code.
= But we are programmers. We know how to deal with repetitive code: we abstract it!

= Before we write more code, let’s analyze the problem from the categorical point of view.

Kleisli Category and Monad

The Writer Category

The Writer Category

The idea of "embellishing the return types of functions in order to add some additional functionality" turns out
to be very fruitful; We’ll see many more examples of it.

We will implement this idea by construct a Writer category:

» The starting point is the Fn category.

= We’ll leave objects unchanged, but redefine our morphisms to be the embellished functions.

For instance, we embellish the function isEven that goes from int to bool.

pair<bool, string> isEven(int n) {
return make_pair(n % 2 == 0, "isEven ");

3
The important point:
= This function is still considered a morphism from int and bool, even though it returns a pair.
By the laws of a category, we should be able to compose this morphism with another morphism that goes
from bool to whatever object; for example, compose it with our earlier negate function:

pair<bool, string> negate(bool b) {
return make_pair(!b, "Not so! ");

b

The Writer Category

pair<bool, string> isEven(int n) { pair<bool, string> negate(bool b) {

3

return make_pair(n % 2 == 0, "isEven "); return make_pair(!b, "Not so! ");

3

The two morphisms cannot be composed as function composition, because the input and output mismatch.
Their composition should look more like this:

pair<bool, string> isOdd(int n) {
pair<bool, string> pl = isEven(n); pair<bool, string> p2 = negate(pl.first);
return make_pair(p2.first, pl.second + p2.second);

3

This composition can be abstract as a higher-order function in C++

template<class A, class B, class C>
function<Writer<C>(A)> compose(function<Writer(A)> ml, function<Writer<C>(B)> m2) {
return [ml, m2]CA x) {
auto pl = ml(x); auto p2 = m2(pl.first); return make_pair(p2.first, pl.second + p2.second);
s
3

The next thing: The identity morphisms in our new category. [Laws of categories should be checked. |

template<class A> Writer<A> identity(A x) { return make_pair(x, ""); }

The Writer Category in Haskell

= Define the Writer type:
type Writer a = (a, String)

= The morphisms are functions from arbitrary type to some Writer type:
a -> Writer b

= The composition is defined as a fish operator:

(>=>) :: (a -> Writer b) -> (b -> Writer c) -> (a -> Writer c)
ml >=> m2 = \x -> let (y, s1) = ml x
(z, s2) = m2 y
in (z, sl ++ s2)

= The identity morphisms are defined as a return function

return :: a -> Writer a
return x = (x, "")

The Writer Category in Haskell

= The Haskell versions of the embellished functions upCase and toWords:

upCase :: String -> Writer String
upCase s = (map toUpper s, "upCase ")

toWords :: String -> Writer [String]
toWords s = (words s, "toWords ")

Ul A W N P

= The composition of the two functions is accomplished with the help of the fish operator:

1 process :: String -> Writer [String]
2 process = upCase >=> toWords

Kleisli Category

= This Writer category is an example of the so called Kleisli category — a category based on a monad.

= Later we will see this monad.

= For our limited purposes, in a Kleisli category:

= Objects are the types of the underlying programming language.
» Morphisms from type A to type B are functions that go from A to a type derived from B using the
particular embellishment.

= Later we’ll see that “embellishment” corresponds to the notion of an endofunctor in a category.

= Each Kleisli category defines its own way of composing such morphisms, as well as the identity morphisms
with respect to that composition.

= Kleisli categories gives us more flexibilities to play with the Fn category.

Monad

= Programmers have developed a whole mythology around the monad.

= For many programmers, the moment when they understand the monad is like a mystical experience.

= The whole mysticism around the monad is the result of a misunderstanding.

= The monad is a very simple concept.
= [t’s the diversity of applications of the monad that causes the confusion.
= The monad abstracts the essence of so many diverse constructions that we simply don’t have a good
analogy for it in everyday life.
= We are like those blind men touching different parts of the elephant and exclaiming triumphantly:

9y €€

“It’s a rope,” “It’s a tree trunk,” or “It’s a burrito!”

Kleisli Category

= We have previously arrived at the writer monad by embellishing regular functions.

= The particular embellishment was done by pairing their return values with strings or, more generally, with

elements of a monoid.
= We can now recognize that such an embellishment is a functor:

newtype Writer w a = Writer (a, w)

instance Functor (Writer w) where
fmap £ (Writer (a, w)) = Writer (f a, w)

= We have subsequently found a way of composing embellished functions, which are functions of the form:

a -> Writer w b

= [t was inside the composition that we implemented the accumulation of the log messages.

Kleisli Category: A more general definition

Given a category C and an endofunctor m : C — C, the corresponding Kleisli category K is defined by:

1. Ko = C

2. Ky = {fazp | fasp isamorphism f/ . . € C}

3. domf, ., = a,and codf, ., = b

4.1, = return, _, ,, 4, Wherereturn, _ ,, 4 € C1

5. (gb—c © fasb)ase = f' > ¢, where — is a composition operation that assigns to each pair

(fr . 4 9b_ . .)of morphisms in C; a morphism A, _, .. . in Cy, denoted by f' »— ¢'.

These data are subject to the following two axioms:

1.Unit: fol=f=10of

i ! _ / _ /
[Thatls.returna%maH asmb = Jaosmp = Jaomp > returng _

2. Associativity: ho (go f) = (hog)o f
[Thatis:(f’ —g)—h = f— (¢ — N

Then, the functor m is called a monad.

Kleisli Category in Haskell
= [n Haskell

= Kleisli composition is defined using the fish operator >=>, and

= the identity morphism is a polymorphic function called return.

= Here’s the definition of a monad using Kleisli composition:

class Monad m where
(>=>) :: (a->mb) -> (b ->mc) ->(a ->mc)
return :: a ->m a

= Keep in mind that there are many equivalent ways of defining a monad, and that this is not the primary

one in the Haskell ecosystem.

= In this formulation, monad laws are very easy to express

(f >=>g) >>>h =

= £ >=> (g >=> h)
return >=> f = f
f

f >=> return ==

Kleisli Category in Haskell

class Monad m where
>=>) :: (a->mb) -> (b ->mc) ->(a ->mc)
return :: a -> m a

(f >=>g) >=>h = f >=> (g >=> h)
return >=> f =

f >=> return

Il
H ol

= This kind of a definition also expresses what a monad really is:

= [t’s a way of composing embellished functions.

= [t’s not about side effects or state. It’s about composition.

= As we’ll see later, embellished functions may be used to express a variety of effects or state, but that’s not
what the monad is for.

The Writer Category in Haskell

The logging functions (the Kleisli morphisms for the Writer functor) form a category because Writer is a

monad:

instance Monoid w => Monad (Writer w) where

f >=> g = \a -> let Writer (b, s) fa
Writer (c, s') gb
in Writer (c, s "mappend’ s')

return a = Writer (a, mempty)

= Monad laws for Writer w are satisfied as long as monoid laws for w are satisfied.

Fish Anatomy

When implementing the fish operator for different monads you quickly realize that a lot of code is repeated
and can be easily factored out.

= To begin with, the Kleisli composition of two functions must return a function, so its implementation may
as well start with a lambda taking an argument of type a:

>=>) :: (a->mb) > ->mc) ->(a ->mc)
f >=>g=\a -> ...

= The only thing we can do with this argument is to pass it to f:

f >=>g=\a ->letmb = f a
in ...

= At this point we have to: produce the result of type m ¢, from an object of typembandg::b->mc
= Let’s define a function that does that for us.
= This function is called bind and is usually written in the form of an infix operator:

(>>=) ::ma->(Ca->mb) ->mb

= For every monad, instead of defining the fish operator, we may instead define bind.

= [n fact, the standard Haskell definition of a monad uses bind:

class Monad m where
(>>=) ::ma->(Ca->mb) ->mb

return :: a ->m a

» Here’s the definition of bind for the Writer monad:

(Writer (a, w)) >>= f = let Writer (b, w') = £ a
in Writer (b, w "mappend’ w')

= [tisindeed shorter than the definition of the fish operator.

Bind Anatomy

It’s possible to further dissect bind, taking advantage of the fact that m is a functor.

(>>=) ::ma->(a->mb) ->mb

= We can use fmap to apply the function a -> m b to the contents of m a.

= The result of the application is therefore of type m (m b); this is not exactly what we want.

= All we need is a function that collapses the double application of m. Such a function is called join:
join ::m (ma) ->ma

= Using join, we can rewrite bind as:
ma >>= £ = join (fmap £ ma)

= That leads us to the third option for defining a monad:

class Functor m => Monad m where
join :: m (ma) ->m a
return :: a ->m a

The do Notation

» The do notation is just syntactic sugar for monadic composition.

= On the surface, it looks a lot like imperative code,

= but it translates directly to a sequence of binds and lambda expressions.

= For instance, take the example we used previously:

process :: String -> Writer String [String]
process = upCase >=> toWords

= In the do notation it would look like this: = This do block is desugared by the compiler to:
process s = do process s =
upStr <- upCase s upCase s >>= \upStr ->

toWords upStr toWords upStr

Monads and Effects

Monads and Effects

= Now we know what the monad is for — it lets us compose embellished functions.
= Why embellished functions are so important in functional programming.
= We’ve already seen one example, the Writer monad, where

= Embellishment let us create and accumulate a log across multiple function calls.

= A problem that would otherwise be solved using impure functions.

= In the following, we will see more examples of monads:

= What’s really amazing: the same pattern of embellishing the function return types works for a large

variety of problems that normally would require abandoning purity.

Example 1: Nondeterminism — The List Monad

= If a function can return many different results, it may as well return them all at once.

= Semantically, a non-deterministic function is equivalent to a function that returns a list of results.

= This makes a lot of sense in a lazy language. For instance:
= [fall you need is one value, you can just take the head of the list, and the tail will never be evaluated.
= [fyou need a random value, use a random number generator to pick the n-th element of the list.
= Laziness even allows you to return an infinite list of results.

= In the List monad, join is implemented as concat.

instance Monad [] where

join = concat

return x = [X]

ma >>= f join (fmap £ ma)

An Example of The List Monad

= The program that generates Pythagorean triples

triples = do
z <- [1..]
X <- [1..z]

y <- [x..z]
guard (x"2 + yA2 == zA2)
return (x, vy, z)

guard :: Bool -> [()]
guard True = [()]
guard False = []

= The problem that normally would require a set of three nested loops has been dramatically simplified with
the help of the List monad and the do notation.
= Haskell let’s you simplify this code even further using list comprehension:
triples = [(x, v, 2z) | z <- [1..], x <- [1..2], y <- [X..2], XxA2 + yA2 == zA2]

» This is just further syntactic sugar for the List monad.

Example 2: Read-Only State — The Reader Monad

= A function that has read-only access to some external state, can be always replaced by a function that
takes that external state as an additional argument.
= A pure function (a, e) -> b (where e is the type of the external state) doesn’t look like a Kleisli morphism.
= But as soon as we curry it to a -> (e -> b) we recognize the embellishment:
newtype Reader e a = Reader (e -> a)
= You may interpret a function returning a Reader as producing a mini-executable:
= An action that given an external state produces the desired result.
= There is a helper function runReader to execute such an action:

runReader :: Reader e a -> e -> a
runReader (Reader f) e = f e

= The Reader e Monad:

instance Monad (Reader e) where

ra >>= k

Reader (\e -> runReader (k (runReader ra e)) e)

return x = Reader (\e -> x)

Example 3: Write-Only State — The Writer Monad

= This is just our initial logging example. The embellishment is given by the Writer functor:

newtype Writer w a = Writer (a, w)

= For completeness, there’s also a trivial helper runWriter that unpacks the data constructor:

runWriter :: Writer w a -> (a, w)
runWriter (Writer (a, w)) = (a, w)

= As we’ve seen before, in order to make Writer composable, w has to be a Monoid.
= Here’s the monad instance for Writer written in terms of the bind operator:

instance (Monoid w) => Monad (Writer w) where

(Writer (a, w)) >>= k = let (a', w') = runWriter (k a)
in Writer (a', w ‘mappend’ w')

return a = Writer (a, mempty)

Example 4 : The State Monad

See the details in the other slides.

Example 5 : Exceptions

= An imperative function that throws an exception is really a partial function.
= [t’s a function that’s not defined for some values of its arguments.

= The simplest implementation of exceptions in terms of pure total functions uses the Maybe functor.
= A partial function is extended to a total function that returns Just a whenever it makes sense, and

Nothing when it doesn’t.

instance Monad Maybe where
Nothing >>= k = Nothing
Just a >>= k = k a
return a = Just a

= Monadic composition for Maybe correctly short-circuits the computation when an error is detected.

= That’s the behavior we expect from exceptions.

Example 6: Continuations

= [t’s the “Don’t call us, we’ll call you!” situation you may experience after a job interview.

= You are supposed to provide a handler, which is a function to be called with the result.

= This style of programming is especially useful when the result is not known at the time of the call, because,
for instance, it’s being evaluated by another thread or delivered from a remote web site.

= A Kleisli morphism in this case returns a function that accepts a handler a -> r; this handler represents the
rest of the computation when the result a is known:

data Cont r a = Cont ((a -> r) -> r)
= The handler a -> r, when it’s eventually called, produces the result of type r, and this result is returned at
the end.

= There is also a helper function for executing the action returned by the Kleisli morphism.

runCont :: Cont r a -> (a -> 1) ->r
runCont (Cont k) h = k h

data Cont r a = Cont ((a ->) -> 1)

runCont :: Cont r a -> (a ->r) ->r
runCont (Cont k) h = k h

= The signatures of the bind operator and return function.

(>>=) :: ma -> (a -> mb) -> m b
(>>=) :: Cont ra -> (a -> Contrb) -> Contrb
return :: a -> m a
return :: a -> Cont r a

= The Cont r Monad:

instance Monad (Cont r) where

--(>>=) :: Cont ra -> (a -> Contrb) -> Contrb
-- :: Cont r b
-- VVVVVV

ka >>= a2kb = Cont $ \hb -> runCont ka (\a -> runCont (a2kb a) hb)
. AN ANNANANNNNNANNANANNNNNNNANNNNNNNANANNANNNNNANANNAN
- 00 'b -> r 0o 9p ANNANNNNNNNNNNNNNNNNNNNNNANAN
-- :ra ->r
--return :: a -> Cont r a

return a = Cont $ \ha -> ha a

AN ANAN

- i a ->r 5o 4O

THE END

Natural Transformation

H IRAL iR

Natural Transformation / [$R7Zr

Given two categories C and D, and two functors F_,p and Gc_p, a natural transformation o from F' to G,
denoted by a : F' — @G, consists of the following data:

= for each object ¢ € Cy, an morphism «,. : F' ¢ — G cin D;q.

= Each a. is called a component of the natural transformation.
These data are required to satisfy the following axiom:
» For any morphism f : ¢ — ¢ in C;
Gfoa.=auoF f
= That is, the following square of morphisms in D commutes.

FCLGC

bl e

FC’ T>GC,

